# **Motor Protection Relay REM 610**

# **Product Guide**





# Contents

| 1 Description              |
|----------------------------|
| ·                          |
| 2 Protection functions     |
| 3 Measurement              |
| 4 Disturbance recorder     |
| 5 Event recorder 4         |
| 7 Trip-circuit supervision |
| 8 Self-supervision 4       |
| 9 Inputs/Outputs           |
| 10 Application             |

| 11 Communication7                       |
|-----------------------------------------|
| 12 Technical data8                      |
| 13 Mounting methods                     |
| 14 Relay case and relay plug-in unit 17 |
| 15 Selection and ordering data          |
| 16 Accessories and tools                |
| 17 Terminal diagram21                   |
| 19 References                           |

#### Copyrights

The information in this document is subject to change without notice and should not be construed as a commitment by ABB Oy. ABB Oy assumes no responsibility for any errors that may appear in this document.

Copyright © 2007 ABB Oy

All rights reserved.

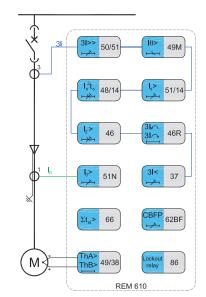
#### Trademarks

ABB is a registered trademark of ABB Group. All other brand or product names mentioned in this document may be trademarks or registered trademarks of their respective holders.

#### 1MRS756304

Issue: May 2007 Version: A/16 May 2007

## 1. Description


The motor protection relay REM 610 is part of the RE\_ 610 series of numerical relays for the protection and supervision of utility substations, industrial switchgear and equipment.

The motor protection relay REM 610 is primarily targeted at protecting large asynchronous low-voltage motors and small and mediumsized high-voltage asynchronous motors. REM 610 handles electrical fault conditions during motor start up, normal operation, idling, and cooling down at standstill, e.g. in pump, fan, mill or crusher applications.

2. Protection functions

The relay offers many integrated protection functions for the protection of motors. The thermal overload protection, cumulative motor start up supervision, running stall protection, earth-fault protection and loss-of-phase are the key functions of this relay. The coverage of the thermal overload protection can be further enhanced by means of an optional RTD module for direct temperature measurement. The relay can be used with both circuitbreaker controlled and contactor-controlled drives. REM 610 can also be used for the protection of cables' feeders and distribution transformers that require thermal overload protection besides overcurrent, earth-fault and phase unbalance protection.

The numerical motor protection relays of the RE\_ 610 series support a wide range of standard communication protocols, among them the IEC 61850, IEC 60870-5-103, Modbus and Profibus.



#### Fig. 1 Protection function overview of REM 610

| Protection functions of REM 610 REM 610                                       |                  |         |
|-------------------------------------------------------------------------------|------------------|---------|
| Function / Description                                                        | IEC              | ANSI    |
| Three-phase thermal overload protection                                       | Θ>               | 49M     |
| Motor start-up supervision based on thermal stress calculation $^{\mbox{a})}$ | $I_s^2 t_s$      | 48/14   |
| Three-phase definite time overcurrent protection, low-set stage <sup>a)</sup> | I_s>             | 51/14   |
| Three-phase instantaneous or definite time short circuit protec-              | 3I>>             | 50/51   |
| tion, high-set stage                                                          |                  |         |
| Inverse-time unbalance protection based on the negative phase                 | I <sub>2</sub> > | 46      |
| sequence current                                                              |                  |         |
| Phase reversal protection                                                     | REV              | 46R     |
| Definite-time undercurrent (loss of load) protection                          | 31<              | 66      |
| Instantaneous or definite-time earth-fault protection                         | I <sub>0</sub> > | 50N/51N |
| Cumulative start-up time counter and restart inhibit function                 | $\Sigma t_{si}$  | 37      |
| Temperature protection using RTD sensors or thermistors                       | ThA>, ThB>       | 49/38   |
| Circuit-breaker failure protection                                            | CBFP             | 62BF    |
| Lockout relay function                                                        |                  | 86      |

<sup>a)</sup> Mutually exclusive functions

## 3. Measurement

The relay physically measures the phase currents and the residual current. From the phase currents, the relay calculates the thermal overload and the negative-phasesequence current of the protected motor or generator. REM 610 also measures a number of characteristic currents of the protected object during start-up and duty operation. Further, by means of an optional measurement card, the relay can directly measure up to eight temperatures via six RTD and two thermistor type sensors.

The values measured can be accessed locally via the user interface on the relay front panel or remotely via the serial communication interface on the rear panel of the relay.

# 4. Disturbance recorder

The relay is provided with a built-in battery backed-up digital disturbance recorder for four analog signal channels and eight digital signal channels. The analog channels can be set to record the curve form of the currents measured. The digital channels can be set to record external or internal relay signals, e.g. the start or trip signals of relay stages, external blocking or control signals. Any digital relay signal such as a protection start or trip signal, or an external relay control signal can be set to trigger the recording. The recordings are stored in a non-volatile memory from which the data can be uploaded for subsequent fault analysis.

# 5. Event recorder

To provide network control and monitoring systems with bay level event logs, the relay incorporates a non-volatile memory with capacity of storing 100 event codes including the time stamps. The non-volatile memory retains its data also in case the relay temporarily loses its auxiliary supply. The event log facilitates detailed pre- and post-fault analyses of the faults and disturbances.

# 6. Trip-circuit supervision

The trip-circuit supervision continuously monitors the availability and operability of the trip circuit. It provides open circuit monitoring both when the circuit breaker is in its closed and in its open position. It also detects the loss of circuit-breaker control voltage.

# 7. Self-supervision

The relay's built-in self-supervision system continuously monitors the state of the relay hardware and the operation of the relay software. Any fault or malfunction detected will be used for alerting the operator. When a permanent relay fault is detected, the protection functions of the relay will be completely blocked to prevent any incorrect relay operation.

# 8. Inputs/Outputs

- Four current transformers
- Two digital inputs
- Three additional digital inputs on an optional RTD module
- Three normally open heavy duty output contacts
- Two change-over signal output contacts
- One dedicated IRF contact
- Input/output contacts freely configurable

Motor Protection Relay REM 610

# 9. Application

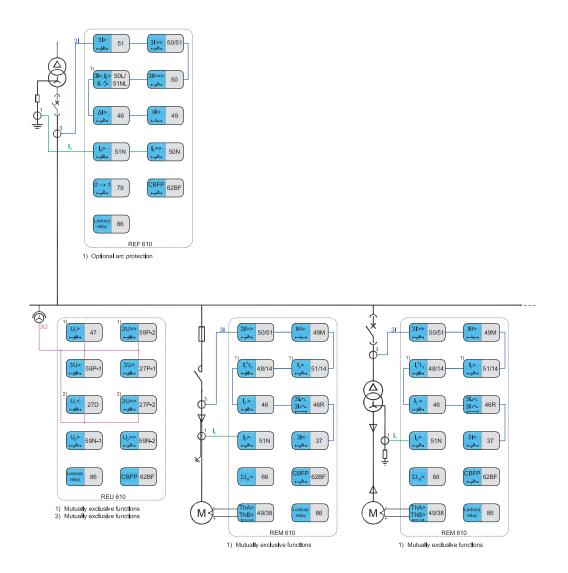



Fig 2. REM 610 can be used for the protection of both circuit-breaker controlled and contactor controlled motor drives. In the contactor controlled motor drive application, the protection also covers the feeder cable and the cable box. The CB controlled application features a transformer and motor drive application. The load side of the transformer is earthed via a resistor, which enables current measuring earth-fault protection to be used. In both applications, the critical motor temperatures are supervised through direct temperature measurement via embedded sensors.

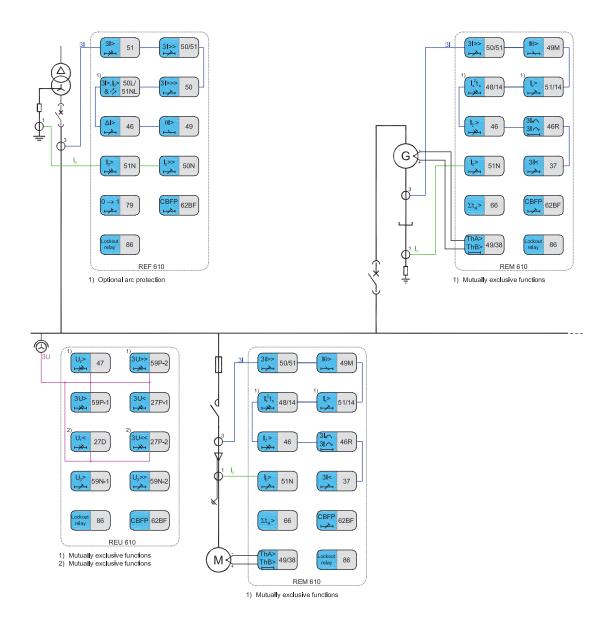
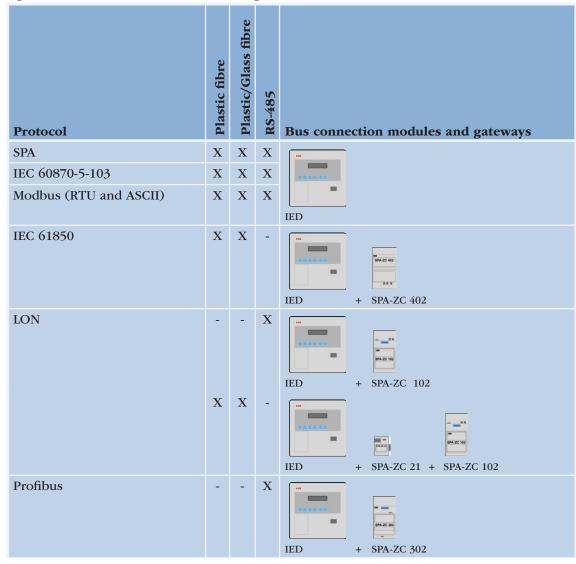




Fig. 3 REM 610 provides a full range of protection functions for the large low-voltage motors and from small to medium sized high-voltage motors. REM 610 is also used for the protection of small asynchronous power generators, for which the relay offers shortcircuit and time overcurrent protection, thermal overload protection, phase unbalance and stall protection, and stator earth-fault protection. Further, the relay features direct temperature measurement via embedded sensors in the generator winding or bearings.

# 10. Communication

The protection relays are connected to the fibre-optic communication bus directly or via bus connection modules and gateways. The bus connection module converts the relay's electrical signals to optical signals for the communication bus and, vice versa, the communication bus' optical signals to electrical signals for the relay.

#### Optional communication modules and protocols



# 11. Technical data

#### Dimensions

| Width  | frame      | 177 mm,   |
|--------|------------|-----------|
|        | case       | 164 mm    |
| Height | frame      | 177 (4U), |
|        | case       | 160 mm    |
| Depth  | case       | 149.3 mm  |
| Weight | relay      | 3.5 kg    |
|        | spare unit | 1.8 kg    |

#### **Power Supply**

| Туре:                                                                                              | REM 610CxxHxxx                                                                     | REM 610CxxLxxx                 |  |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------|--|
| U <sub>aux</sub> rated                                                                             | U <sub>r</sub> = 100/110/120/220/240 V AC<br>U <sub>r</sub> = 110/125/220/250 V DC | U <sub>r</sub> = 24/48/60 V DC |  |
| U <sub>aux</sub> variation (temporary)                                                             | 85110% x U <sub>r</sub> (AC)<br>80120% x U <sub>r</sub> (DC)                       | 80120% x U <sub>r</sub> (DC)   |  |
| Burden of auxiliary voltage sup-<br>ply under quiescent (P <sub>q</sub> )/operat-<br>ing condition | <9 W/13 W                                                                          |                                |  |
| Ripple in DC auxiliary voltage                                                                     | Max 12% of the DC value (at frequency of 100 Hz)                                   |                                |  |
| Interruption time in the auxiliary<br>DC voltage without resetting the<br>relay                    | <50 ms at U <sub>aux</sub> ra                                                      | ited                           |  |
| Time to trip from switching on the auxiliary voltage <sup>a)</sup>                                 | <350 ms                                                                            |                                |  |
| Internal over temperature limit                                                                    | +100 °C                                                                            |                                |  |
| Fuse type                                                                                          | T2A/250 V                                                                          |                                |  |

a) Time to trip of stages I>>.

## **Energizing inputs**

| Rated frequency               | 50/60 Hz ± 5 Hz |        |
|-------------------------------|-----------------|--------|
| Rated current, I <sub>n</sub> | 1 A             | 5 A    |
| Thermal withstand capability: |                 |        |
| continuously                  | 4 A             | 20 A   |
| • for 1 s                     | 100 A           | 500 A  |
| • for 10 s                    | 25 A            | 100 A  |
| Dynamic current withstand:    |                 |        |
| half-wave value               | 250 A           | 1250 A |
| Input impedance               | <100 mΩ         | <20 mΩ |

#### Measuring range

| Measured currents on phases $I_{\rm L1},I_{\rm L2}$ and $I_{\rm L3}$ as multiples of the rated currents of the energizing inputs | 050 x I <sub>n</sub> |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Earth-fault current as a multiple of the rated current of the energizing input                                                   | 08 x I <sub>n</sub>  |

## **Digital Inputs**

| Rated voltage        | DI1DI2                        | DI3DI5 (optional)             |
|----------------------|-------------------------------|-------------------------------|
| • REM 610BxxHxxx     | 110/125/220/250 V DC          |                               |
| Activating threshold | Max. 88 V DC (110 V DC -20%)  |                               |
| • REM 610BxxLxxx     | 24/48/60/110/125/220/250 V    |                               |
| Activating threshold | DC                            |                               |
| • REM 610BxxxxMx     | Max. 19,2 V DC (24 V DC -20%) | 24/48/60/110/125/220/250 V DC |
| Activating threshold |                               | Max. 19,2 V DC (24 V DC -20%) |
| Operating range      |                               | ±20% of the rated voltage     |
| Current drain        |                               | 218 mA                        |
| Power consumption/   |                               |                               |
| input                |                               | <0.9 W                        |

## Signal output SO1

| Rated voltage                                                                                | 250 V AC/DC          |
|----------------------------------------------------------------------------------------------|----------------------|
| Continuous carry                                                                             | 5 A                  |
| Make and carry for 3.0 s                                                                     | 15 A                 |
| Make and carry for 0.5 s                                                                     | 30 A                 |
| Breaking capacity when the control-circuit time constant $L/R < 40$ ms, at $48/110/220$ V DC | 1 A/0.25 A/0.15 A    |
| Minimum contact load                                                                         | 100 mA at 24 V AC/DC |

## Signal output SO2 and IRF output

| Rated voltage                                                                           | 250 V AC/DC          |
|-----------------------------------------------------------------------------------------|----------------------|
| Continuous carry                                                                        | 5 A                  |
| Make and carry for 3.0 s                                                                | 10 A                 |
| Make and carry for 0.5 s                                                                | 35 A                 |
| Breaking capacity when the control-circuit time constant L/R <40 ms, at 48/110/220 V DC | 1 A/0.25 A/0.15 A    |
| Minimum contact load                                                                    | 100 mA at 24 V AC/DC |

## Power outputs PO1, PO2 and PO3

| Rated voltage                                                                                                                             | 250 V AC/DC          |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Continuous carry                                                                                                                          | 5 A                  |
| Make and carry for 3.0 s                                                                                                                  | 15 A                 |
| Make and carry for 0.5 s                                                                                                                  | 30 A                 |
| Breaking capacity when the control-circuit time constant $L/R < 40$ ms, at $48/110/220$ V DC (PO1 with both contacts connected in series) | 5 A/3 A/1 A          |
| Minimum contact load                                                                                                                      | 100 mA at 24 V AC/DC |
| Trip-circuit supervision (TCS):                                                                                                           |                      |
| Control voltage range                                                                                                                     | 20265 V AC/DC        |
| • Current drain through the supervision circuit                                                                                           | ~1.5 mA              |
| Minimum voltage over a contact                                                                                                            | 20 V AC/DC (1520 V)  |

#### Enclosure class of the flush-mounted relay

| Front side                      | IP 54 |
|---------------------------------|-------|
| Rear side, top of the relay     | IP 40 |
| Rear side, connection terminals | IP 20 |

## RTD/analogue inputs

| Supported RTD sensors                                | 100 Ω platinum<br>250 Ω platinum<br>1000 Ω platinum<br>100 Ω nickel<br>120 Ω nickel<br>120 Ω nickel (US)<br>10 Ω copper | TCR 0.00385 (DIN 43760)<br>TCR 0.00385<br>TCR 0.00385<br>TCR 0.00618 (DIN 43760)<br>TCR 0.00618<br>TCR 0.00672<br>TCR 0.00427 |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Supported PTC thermistor range                       | 020 kΩ                                                                                                                  |                                                                                                                               |
| Maximum lead resistance (three-<br>wire measurement) | 200 $\Omega$ per lead                                                                                                   |                                                                                                                               |
| Isolation                                            | 2 kV (inputs to protective earth)                                                                                       |                                                                                                                               |
| Sampling frequency                                   | 5 Hz                                                                                                                    |                                                                                                                               |
| Response time                                        | <8 s                                                                                                                    |                                                                                                                               |
| RTD/resistance sensing current                       | Maximum 4.2 mA rms<br>6.2 mA rms for 10 Ω copper                                                                        |                                                                                                                               |

#### Environmental tests and conditions

| Recommended service temperature range (continu- | -10+55°C                    |
|-------------------------------------------------|-----------------------------|
| ous)                                            |                             |
| Humidity                                        | <95% RH                     |
| Limit temperature range (short-term)            | -40+70°C                    |
| Transport and storage temperature range         | -40+85°C according to       |
|                                                 | IEC 60068-2-48              |
| Dry heat test (humidity <50%)                   | According to IEC 60068-2-2  |
| Dry cold test                                   | According to IEC 60068-2-1  |
| Damp heat test, cyclic (humidity >93%)          | According to IEC 60068-2-30 |
| Atmospheric pressure                            | 86106 kPa                   |

## Electromagnetic compatibility tests

| The EMC immunity test level meets the requirements listed below: |                                    |
|------------------------------------------------------------------|------------------------------------|
| 1 MHz burst disturbance test, class III:                         | According to IEC 60255-22-1        |
| Common mode                                                      | 2.5 kV                             |
| Differential mode                                                | 1.0 kV                             |
| Electrostatic discharge test, class IV:                          | According to IEC 61000-4-2,        |
|                                                                  | IEC 60255-22-2 and ANSI            |
|                                                                  | 37.90.3-2001                       |
| • For contact discharge                                          | 8 kV                               |
| • For air discharge                                              | 15 kV                              |
| Radio frequency interference tests:                              |                                    |
| Conducted, common mode                                           | According to IEC 61000-4-6 and IEC |
|                                                                  | 60255-22-6 (2000)                  |
|                                                                  | 10 V (rms), f = 150 kHz80 MHz      |
| Radiated, amplitude-modulated                                    | According to IEC 61000-4-3 and IEC |
|                                                                  | 60255-22-3 (2000)                  |
|                                                                  | 10 V/m (rms), f = 801000 MHz       |
| • Radiated, pulse-modulated                                      | According to the ENV 50204 and IEC |
|                                                                  | 60255-22-3 (2000)                  |
|                                                                  | 10 V/m, f = 900 MHz                |

(continued)

| <ul><li>Fast transient disturbance tests:</li><li>Power outputs, energizing inputs, power supply</li><li>I/O ports</li></ul> | According to IEC 60255-22-4, and<br>IEC 61000-4-4<br>4 kV<br>2 kV                                                                                |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul><li>Surge immunity test:</li><li>Power outputs, energizing inputs, power supply</li><li>I/O ports</li></ul>              | According to IEC 61000-4-5<br>4 kV, line-to-earth, 2 kV, line-to-line<br>2 kV, line-to-earth, 1 kV, line-to-line                                 |
| Power frequency (50 Hz) magnetic field<br>Voltage dips and short interruptions                                               | 300 A/m continuous<br>According to IEC 61000-4-11<br>30%/10 ms<br>60%/100 ms<br>60%/1000 ms<br>>95%/5000 ms                                      |
| Electromagnetic emission tests:<br>• Conducted, RF emission (Mains terminal)<br>• Radiated RF emission<br>CE compliance      | According to the EN 55011<br>EN 55011, class A, IEC 60255-25<br>EN 55011, class A, IEC 60255-25<br>Complies with the EMC directive<br>89/336/EEC |

#### Insulation test

| Dielectric tests                   | According to IEC 60255-5                                         |
|------------------------------------|------------------------------------------------------------------|
| • Test voltage                     | 2 kV, 50 Hz, 1 min                                               |
| Impulse voltage test               | According to IEC 60255-5                                         |
| • Test voltage                     | 5 kV, unipolar impulses, waveform 1.2/50 Ms, source energy 0.5 J |
| Insulation resistance measurements | According to IEC 60255-5                                         |
| Isolation resistance               | >100 MΩ, 500 V DC                                                |

#### **Mechanical tests**

| Vibration tests (sinusoidal) | According to IEC 60255-21-1, class I |
|------------------------------|--------------------------------------|
| Shock and bump test          | According to IEC 60255-21-2, class I |

#### Data communication

Front interface:

- Optical connection (infrared) via the front communication cable (1MRS050698)
- SPA bus protocol
- 9.6 or 4.8 kbps (9.6 kbps with front communication cable)

## **Protection functions**

| Stage θ>                                  |                                                |
|-------------------------------------------|------------------------------------------------|
| Feature                                   | Value                                          |
| Set safe stall time, t <sub>6x</sub>      | 20120 s <sup>a)</sup>                          |
| Set ambient temperature, T <sub>amb</sub> | 070 °C                                         |
| Set restart inhibit level, θi>            | 2080%                                          |
| Set prior alarm level, $\theta_a >$       | 50100%                                         |
| Trip level, $\theta_t$ >                  | 100%                                           |
| Time constant multiplier, K <sub>c</sub>  | 164                                            |
| Weighting factor, p                       | 20100%                                         |
| Operate time accuracy:                    |                                                |
| • >1.2 x In                               | $\pm 5\%$ of the set operate time or $\pm 1$ s |

a) The setting step is 0.5.

#### Stages Is>

| Feature                                        | Value                                            |
|------------------------------------------------|--------------------------------------------------|
| Set start value, I <sub>s</sub> >              |                                                  |
| • At definite-time characteristic              | 1.0010.0 x I <sub>n</sub>                        |
| Start time, typical                            | 55 ms                                            |
| Time/current characteristics                   |                                                  |
| • Definite time operate time, t <sub>s</sub> > | 0.3080.0 s                                       |
| Resetting time, typical/maximum                | 35/50 ms                                         |
| Retardation time                               | 30 ms                                            |
| Drop-off/start ratio, typical                  | 0.96                                             |
| Operate time accuracy                          |                                                  |
| • At definite-time characteristic              | $\pm 2\%$ of the set operate time or $\pm 25$ ms |
| Operation accuracy                             | ±3% of the start value                           |

Stage  $I_s^{2x} t_s$  and stage  $I_s$  > cannot be used at the same time.

## Stage Is<sub>2</sub>x ts

| Feature                                             | Value                               |
|-----------------------------------------------------|-------------------------------------|
| Set start-up current motor, I <sub>s</sub> >        | 1.0010.0 x I <sub>n</sub>           |
| Start time, typical                                 |                                     |
| • At start criterion $I_L > I_s$                    | 100 ms                              |
| Set start-up time for motor, $t_s$ >                | 0.3080.0s                           |
| Resetting time, typical/maximum                     | 180/250 ms                          |
| Drop-off/pick-up ratio, typical                     |                                     |
| • At start criterion I <sub>L</sub> >I <sub>s</sub> | 0.96                                |
| Operation accuracy                                  | ±10% of the calculated operate time |
|                                                     | ±0.2 s                              |
| Shortest possible operate time                      | 300 ms                              |

Stage  $I_s^2 x t_s$  and stage  $I_s^2 > cannot be used at the same time.$ 

#### Stage I>>

| Feature                           | Value                                            |
|-----------------------------------|--------------------------------------------------|
| Set start value, I>>              |                                                  |
| • At definite-time characteristic | 0.5020.0 x I <sub>n</sub>                        |
| Start time, typical               | 50 ms                                            |
| Time/current characteristic       |                                                  |
| • Definite time operate time, t0> | 0.05300 s                                        |
| Resetting time, typical/maximum   | 40/50 ms                                         |
| Retardation time                  | 30 ms                                            |
| Drop-off/pick-up ratio, typical   | 0.96                                             |
| Operate time accuracy at          |                                                  |
| Definite-time characteristic      | $\pm 2\%$ of the set operate time or $\pm 25$ ms |
| Operation accuracy                | ±3% of the set start value                       |

#### Stage I<

| Feature                           | Value                                                       |
|-----------------------------------|-------------------------------------------------------------|
| Set start value, I<               |                                                             |
| • At definite-time characteristic | 3080% I <sub>n</sub>                                        |
| Start time, typical               | 300 ms                                                      |
| Time/current characteristic       |                                                             |
| • Definite time operate time, t<  | 2600 s                                                      |
| Resetting time, typical/maximum   | 300/350 ms                                                  |
| Drop-off/pick-up ratio, typical   | 1.1                                                         |
| Inhibitation of I<                | <12% I <sub>n</sub>                                         |
| Operate time accuracy             |                                                             |
| • At definite-time characteristic | $\pm 3\%$ of the set operate time or 100 ms                 |
| Operation accuracy                | $\pm 3\%$ of the set start value or $+0.5\%$ I <sub>n</sub> |

| Stage I <sub>0</sub> >            |                                                  |
|-----------------------------------|--------------------------------------------------|
| Feature                           | Value                                            |
| Set start value, I <sub>0</sub> > |                                                  |
| • At definite-time characteristic | 1.0100% I <sub>n</sub>                           |
| Start time, typical               | 50 ms                                            |
| Time/current characteristic       |                                                  |
| • Definite time operate time, t<  | 0.05300 s                                        |
| Resetting time, typical/maximum   | 40/50 ms                                         |
| Retardation time                  | 30 ms                                            |
| Drop-off/pick-up ratio, typical   | 0.96                                             |
| Operate time accuracy             |                                                  |
| • At definite-time characteristic | $\pm 2\%$ of the set operate time or $\pm 25$ ms |
| Operation accuracy                |                                                  |
| • 1.010.0% I <sub>n</sub>         | ±5% of the set start value                       |
| • 1.0100% I <sub>n</sub>          | $\pm 3\%$ of the set start value                 |

#### Stage I<sub>2</sub>>

| Feature                              | Value                                                        |
|--------------------------------------|--------------------------------------------------------------|
| Set start value, I <sub>2</sub> >    |                                                              |
| • At IDMT characteristic             | 0.100.50 x I <sub>n</sub>                                    |
| Start time, typical                  | 100 ms                                                       |
| Time/current characteristic          |                                                              |
| • IDMT time constant, K <sub>2</sub> | 5100                                                         |
| Resetting time, typical/maximum      | 130/200 ms                                                   |
| Drop-off/pick-up ratio, typical      | 0.95                                                         |
| Operate time accuracy                |                                                              |
| • I2> + 0.0654.0 x I <sub>n</sub>    | $\pm 5\%$ of the calculated operate time or                  |
|                                      | ±100 ms                                                      |
| Operation accuracy                   | ±5% of the set start value                                   |
| Inhibitation of $I_2$ >              | $I < 0.12 \text{ x } I_n \text{ or } I > 4.0 \text{ x } I_n$ |

## Stage REV

| Feature                         | Value                         |
|---------------------------------|-------------------------------|
| Trip value                      | NPS ≥75% of the maximum phase |
|                                 | current                       |
| Time/current characteristic     |                               |
| Definite time operate time      | 220 ms ±50 ms                 |
| Resetting time, typical         | 100200 ms                     |
| Drop-off/pick-up ratio, typical | 0.95                          |

## Stage $\Sigma_{tsi}$

| Feature                                                                  | Value    |
|--------------------------------------------------------------------------|----------|
| Set restart inhibit value, $\Sigma_{tsi}$                                | 5500 s   |
| Countdown rate of start-up time counter, $\Delta \Sigma_{ts} / \Delta t$ | 2250 s/h |

## Stages ThA> and ThB>

| Feature                                               | Value                                                     |  |
|-------------------------------------------------------|-----------------------------------------------------------|--|
| Operate time accuracy at definite-time characteristic | $\pm 3\%$ of the set operate time or 200 ms <sup>a)</sup> |  |
| RTD sensors                                           |                                                           |  |
| Set alarm value, Ta16>                                | 0200 °C                                                   |  |
| Operate time, ta16>                                   | 1100 s                                                    |  |
| Set trip value, Tp16>                                 | 0200 °C                                                   |  |
| Operate time, tp16>                                   | 1100 s                                                    |  |
| Hysteresis                                            | 5 °C                                                      |  |
| Operation accuracy                                    | ±1 °C (±3 °C for Cu10)                                    |  |
| Thermistors                                           |                                                           |  |
| Set trip value, Thp1> and Thp2>                       | 0.115.0 kΩ                                                |  |
| Operate time                                          | 2 s                                                       |  |
| Operation accuracy                                    | ±1% of the setting range                                  |  |

a) Note the response time of the RTD card (<8s).

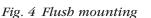
### CBFP

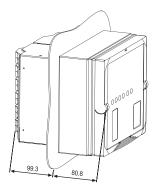
| Value                      |
|----------------------------|
| 0.1060.0 s                 |
|                            |
|                            |
| 0.13/0.11 x I <sub>n</sub> |
|                            |

# 12. Mounting methods

Using the appropriate mounting accessories, the standard relay case for the RE\_ 610 series relays can be flush mounted, semiflush mounted or wall mounted. The flush mounted and wall mounted relay cases can also be mounted in a tilted position (25°) by using special accessories. Further, the relays can be mounted in any standard 19" instrument cabinet by means of 19" mounting panels available with cut-outs for one or two relays. Alternatively, the relays can be mounted in 19" instrument cabinets by means of 4U Combiflex equipment frames. For the routine testing purposes, the relay cases can be equipped with test switches, type RTXP 18, which can be mounted side by side with the relay cases.

Mounting methods:


- Flush mounting
- Semi-flush mounting
- Semi-flush mounting in a 25° angle
- Rack mounting
- Wall mounting
- Mounting to a 19" equipment frame
- Mounting with a RTXP 18 test switch to a 19" rack


# 13. Relay case and relay plug-in unit

As a safety measure, the relay cases for the current measuring relays are provided with automatically acting contacts for shortcircuiting the CT secondaries, when a relay plug-in unit is withdrawn from the relay case. In addition, the relay case is provided with a mechanical coding system to prevent the current measuring relay plug-in units from being inserted into a case for a voltage relay unit and vice versa, i.e. the relay cases are associated to a certain type of relay plug-in unit.

There is, however, a universal relay case available, which is not associated to a certain plug-in unit type. When a relay plug-in unit is plugged into such a relay case for the first time, the relay case will automatically adapt to that particular relay type, i.e. the shortcircuiting contacts will be activated as well as the mechanical blocking system. Hereafter, the relay case is permanently associated to a certain relay type.







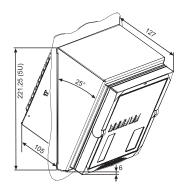



Fig. 5 Semi-flush mounting

Fig. 6 Semi-flush mounting in a 25° angle

# 14. Selection and ordering data

When ordering protection relays and/or accessories, please specify the following information: order number, HMI language set number and quantity. The order number identifies the protection relay type and hardware and is labelled on the marking strip under the lower handle of the relay. Use the ordering key information in Fig. 7 to generate the order number when ordering complete protection relays.

|                                                              |        | 귀나다  | "CHH |  |
|--------------------------------------------------------------|--------|------|------|--|
|                                                              |        |      |      |  |
| Revision                                                     |        |      |      |  |
| Current revision                                             | С      | -    |      |  |
| Phase-current inputs:                                        |        |      |      |  |
| 5 = 5A                                                       | 5      |      |      |  |
| 1 = 1A                                                       | 1      | - 11 |      |  |
| Earth-fault current input:                                   |        |      |      |  |
| 5 = 5A                                                       | 5      |      |      |  |
| 1 = 1A                                                       | 1      |      |      |  |
| Power supply:                                                |        |      |      |  |
| H = 100-240 V AC/110-250 V DC,                               | Н      |      |      |  |
| 2xDI (110/125/220/250 V DC),                                 |        |      |      |  |
| 3xPO                                                         |        |      |      |  |
| 2xSO                                                         |        |      |      |  |
| L = 24-60 V DC,                                              | L      |      |      |  |
| 2xDI (24/48/60/110/125/220/250 V DC),                        |        |      |      |  |
| 3xPO,                                                        |        |      |      |  |
| 2xSO                                                         |        |      |      |  |
| RTD/Thermistor module:<br>M = included                       | М      |      |      |  |
| N = none                                                     | N      |      |      |  |
| Communication module:                                        | IN     |      |      |  |
| P = plastic fiber                                            | Р      |      |      |  |
| G = plastic and glass fiber                                  | F<br>G |      |      |  |
| R = RS-485                                                   | R      |      |      |  |
| N = none                                                     | N      |      |      |  |
| Language set:                                                |        |      |      |  |
| 01 = (IEC) English, Swedish, Finnish                         | 01     |      |      |  |
| 02 = (IEC) English, German, French, Italian, Spanish, Polish | 02     |      |      |  |
| 11 = (ANSI) English, Spanish, Portuguese                     | 11     |      |      |  |
|                                                              |        |      |      |  |

Fig. 7 Ordering key for complete relays

Motor Protection Relay REM 610

Use the ordering key information in Fig. 8 to generate the order number when ordering spare units.

|                                                              | REM610 | ppppsc | IS 💶 |
|--------------------------------------------------------------|--------|--------|------|
|                                                              |        |        |      |
| Revision                                                     |        |        |      |
| Current revision                                             | С      |        |      |
| Phase-current inputs:                                        |        |        |      |
| 5 = 5A                                                       | 5      |        |      |
| 1 = 1A                                                       | 1      | -      |      |
| Earth-fault current input:                                   |        |        |      |
| 5 = 5A                                                       | 5      |        |      |
| 1 = 1A                                                       | 1      |        |      |
| Power supply:                                                |        |        |      |
| H = 100-240 V AC/110-250 V DC,                               | Н      |        |      |
| 2xDI (110/125/220/250 V DC),                                 |        |        |      |
| 3xPO                                                         |        |        |      |
| 2xSO                                                         |        |        |      |
| L = 24-60 V DC,                                              | L      |        |      |
| 2xDI (24/48/60/110/125/220/250 V DC),                        |        |        |      |
| 3xPO,                                                        |        |        |      |
| 2xSO                                                         |        |        |      |
| RTD/Thermistor module:                                       |        |        |      |
| M = included                                                 | М      |        |      |
| N = none                                                     | N      |        |      |
| Language set:                                                |        |        |      |
| 01 = (IEC) English, Swedish, Finnish                         | 01     |        |      |
| 02 = (IEC) English, German, French, Italian, Spanish, Polish | 02 -   |        |      |
| 11 = (ANSI) English, Spanish, Portuguese                     | 11     |        |      |

Fig. 8 Ordering key for spare units

# 15. Accessories and tools

| Item                                                   | Order nr   |
|--------------------------------------------------------|------------|
| Cables:                                                |            |
| Front communication cable                              | 1MRS050698 |
| Mounting accessories:                                  |            |
| Semi-flush mounting kit                                | 1MRS050696 |
| Inclined semi-flush mounting kit                       | 1MRS050831 |
| 19 " rack mounting kit with cutout for one relay       | 1MRS050694 |
| 19 " rack mounting kit with cutout for two relays      | 1MRS050695 |
| Surface mounting frame                                 | 1MRS050697 |
| Mounting bracket for RTXP 18                           | 1MRS061207 |
| Mounting bracket for 4U high Combiflex equipment frame | 1MRS061208 |
| Test switches:                                         |            |
| Test switch RTXP 18                                    | 1MRS050783 |
| Optional communication cards:                          |            |
| Plastic fibre                                          | 1MRS050889 |
| RS-485                                                 | 1MRS050892 |
| Plastic and glass fibre                                | 1MRS050891 |
| RE_ 610 universal cases:                               |            |
| Empty universal relay case for RE_ 610                 | 1MRS050904 |

| Configuration, setting and SA system tools | Version                     |
|--------------------------------------------|-----------------------------|
| CAP 501 Relay Setting Tool CAP 50          | v. 2.4.0-1 or later         |
| CAP 505 Relay Setting Tool CAP 50          | v. 2.4.0-1 or later         |
| SMS 510 Substation Monitoring System       | SMS 510 v.1.2.0-1 or later  |
| LIB 510 Library for MicroSCADA v. 8.4.4    | LIB 510 v. 4.0.5-3 or later |